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ABSTRACT

The usefulness of an extra sum of squares statistic QK for detecting

K outliers has been discussed pr ously-in the context of two-way tables.

(See Gentleman and Wilk, 1975a, 1975b; John and Draper, 19781 and Draper and

John, 1980.) That work is extended here to straight line regression

situations arising from and motivated by a specific set of research data.

Percentage points for the appropriate test statistics are obtained by

simulation, approximations ")r these percentage points are suggested, and

power calculations are made for various designs and outlier situations.

Correct determination of K and position(s) of the outlier(s) appear to be

important in influencing power.
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SIGUIVICANM3 AND IMPLANAIOV

Previous work in two-way tables on the use of an extra sum of squares

Statistic QKto detect outliers is extended to the straight line regression

situation, motivated by moms specific research data. Percentage points for

the appropriate test statistics are obtained via simulation, and approx

inations for these percentage points are suggested. Power calculations, made

for various derived designs and outliers situations, show the effects of the

choice of K, the number of potential outliers ssemed, and the positions of

the outliers in the predictor variable space.
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PERCENTAGE POINTS AND POWER CALCULATIONS FOR

'1 OUTLIER TESTS IN A REGRESSION SITUATION

Camil Fuchs* and Norman R. Draper**

1. INTRODUCTION AND NOTATION

In prior work by Gentleman and Wilk (1975a, 1975b), by John and Draper

(1978), and by Draper and John (1980), the utility of the Q statistic for

checking outliers in data used to fit a linear model was explored. If

one or more observations (K in general) are suspect, extra dummy variables

e can be inserted in the model to represent the discrepancies, and the QK

statistic is simply the extra sum of squares due to the estimates of the

parameters associated with the dumny variables. Specifically, if our original

model is y a X + e, we can write

"* ~2 " 2 + (1.1)

where y - (y ,)' is an n x I vector of response observations, X - (X

is an n x p matrix of predictor variable values, 0 is a p x 1 vector of model

parameters, 0 is a K x 1 vector of additional parameters and c is an n x 1

vector of random errors distributed c - N(OIa ). The positioning of the K

potential outliers as the last elements of y is for convention only.

* Statistics Departments, Tel-Aviv University, Tel-Aviv, and Haifa

* University, Haifa, Israel
** Statistics Department, University of Wisconsin, 1210 West Dayton St.,

Madison, WI 53706

Sponsored by the U. S. Amy under Contracts Nos. DAAG29-80-C-0041 and
DAAG29-80-C-0113.
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If, a priori, the number K and the locations implied by choice of

X2 are specified, and if s2 is an unbiased estimate of a2 independent of QK1
then

'S FK = /QKK)/s 2  (1.2)

has a non-central F distribution vith nondentrallty parameter

IN K:z= 8(I-H22 )9/2a 2 (1.3)

where H22 is the K x K lower right part of H = X(X'X)'x ' when H is

partitioned as

H HI Hi; 12 [X1(x)xrXi I (X'Xr'x .X (1.4)
:' 21 H22 X2(X'X)'IxX X2(X'X)'Ixi

(See Cook, 1979; Ellenberg, 1976.) H = ((h1 )) is sometimes called the hat

matrix, because y = Hy so the h values give relative contributions ("leverage')

of the corresponding observations to the fitted value at each point. Note

that, in general, trace H = p, the number of parameters in the model. For
K = 1, the parameter of non-centrality is X1 = en(lhnn)/2a.

In most practical situations, the F distribution is not appropriate

because the number and the locations of the outliers have to be elucidated
-°,,

from the data. In that case, the quadratic form OK has to be calculated

for all the permutations of K omissions. The largest QK over all the per-

mutations of K omissions is denoted by QKm.

-,- . -. - 5 U...,.~~*5*-.. .-.. .-.-- . . .- - . ... ': . .. . - . . . : . . .
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*! Because

',4QK " 2 )- )'e 2(1)

where

em (1H (1.6)

with the obvious split of the residual vector e into the first (n-K) and

last K elements, it is clear that Q,, corresponds to the square of the

largest standardized residual in modulus; in fact the ith (iml,2,...,n) Q,

value is

Qlj " ei/Cl'hit)" (1.7)

When K - 2, an interesting subtlety arises. We can always write

r2 {r(1)12r1  {rl)2

1- 2 - (1.8)
Q2  1-h1  1.h 22

, - . .. .,, .% . . * . . .. .. .. . . . . . . . . . . . . .
........... ... ................................ .....................,.,... .... ... ... .............., . .......... .... , ..
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In this expression, r1 denotes one of the residuals et whose location pro-

vides the largest Q2 and r[ 1 ) denotes the residual that would occur in the

second location that provides the largest Q2, if the observation in the

first location were dropped from the data. (Note that we can also write

2m 1 + 2i09:' .,.:,Q2m =  l-h(2) 1- I":22(19

since the relationship is perfectly symmetrical.) Now, if r /1-hl ) 1 / 2

is the largest in modulus standardized residual, then r1)/(l-h()l/2 is

the largest in modulus (adjusted) standardized residual obtained after re-

moval of the observation corresponding to r1. (Similar remarks apply with

subscripts 1 and 2 reversed.) However, neither rl/(1-h11 )1 / 2 nor r2/(1-h 2 2)1/2

need be the largest in modulus'standardized residual! In our subsequent

simulations, we nevertheless assume that one of them is, and so compute

Q2m in a "stepwise" fashion. This greatly simplifies the simulation pro-

cedure for K = 2, and is an adequate approximation in view of the fact that

the correct and approximate simulation results appear to be identical well

over 99% of the time, in practice. (To test this, we performed 3000

simulations calculating Q2m both directly and in stepwise fashion. The

" results were identical in all except 8 cases.) Similar considerations

would apply for K > 3.

2The QKm and the corresponding residual mean square sK provide the

test statistic

.............................................. . ,......................................................- , ., . ......... .... ,.



FKm = (QKM/K/SK. (1.10)

The distribution of FKm is non-standard and unknown. In previous work, per-

centage points have been generated for various specific cases of two-way

tables. See John and Draper (1978) and Draper and John (1980) both for de-

tails, and for useful approximations to those percentage points for K = 1,2,3.

The present study focuses on the case of straight line regression and

extends previous investigations. It examines critical values for the outlier

test based on FKm, approximations to those critical values, and also the

power of these tests. The effects of various design configurations and of

mis-specification of K on the power calculations is also examined. The

study was triggered by analysis of data from an experiment on the relationship

between the number of viable cells Injected Into the intestine of host rats

and the number of y-glutamyl transpeptidase colonies [GT+] formed in the

liver lobes of those animals. The injected cell suspensions were prepared

from donor rats livers subjected to a standard carginogen diet of 2-

acetylaminofluorene (AAF) concurrent with a two third hepatectomy (PH).

This AAF/PH regiment has been used extensively in recent years and is clearly

toxic to the health of the test animals. The host animals were also subjected

to an AAF/PH regiment and were sacrificed 10 days post the PH and the in-

IC jection of the cells from the donor animals. This experiment is from an on-

going research study of the mechanism by which carcinogens induce liver

cancer in experimental animals. For further details see Laishes and Rolfe

j * (1980).

The data, shown in Table 1, were obtained on three different days de-

noted as A, B and C, with 13, 8, and 5 survivor host rats (not cannibalized)

7NA: : ,-< '_ ,. . . ,. . . .. . . . .- . . , .. . . . . . . . . . . . .
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Table 1. Average Counts of GT(+) Colonies in Two Standard Liver5
Sections and the Number of Viable Cells Injected (xlO " )

Case No. Y=GT(+) Cells injected (xlO -5)

1 83.0 5
2 59.5 5
3 100.0 7
4 92.5 7
5 71.0 10

Experiment A 6 112.5 10

7 141.0 15
8 56.0 3
9 11.5 1

10 9.5 1
11 1.0 0
12 0.0 0
13 54.5 5

14 48.0 5
15 131.0 10
16 52.0 3
17 32.5 3

Experiment B 18 14.0
19 6.5 1
20 0.5 0
21 64.0 5

22 136.0 10
23 63.0 5

Experiment C 24 9.5 1
25 24.5 1
26 0.0 0

';V,,,' , -.'.. ,''€""',:-"""'. .. -. ".. " .. ",."" .. " ••...... . . . .. . . .. .1 .. '.-.. -, - .
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respectively. Laishes and Rolfe (1980) found that a straight line re-

gression model represents adequately the association between x a the number

of viable liver cells injected into host rats and y - the nuner of GT(+)

colonies observqd on day ten post infection (R2-0.90). When the test

animals were autopsied, it was observed that two animals from Experiment A

were obviously afflicted with a severe cholestatic disorder (exhibiting a

yellowish, jaundiced liver)and one animal from Experiment C had received,

through technical error, an incomplete PH (revealed by the presence of a

portion of the median liver lobe). Thus, despite efforts to control animal

health, a small percent were overly diseased at the time of the sampling.

The question aroused in this experiment is whether regression diagnostics

are able to detect the diseased animals as outliers. The concern is that,

in other experiments, disease states that could influence liver colony

developments might be overlooked. Additionally, it is also desirable to

develop tools for detecting animals afflicted by subclinical disease states,

which can only be revealed by complete pathological and microbiological

work-ups.

The design from the above mentioned experiment served as an initial de-

sign in Monte-Carlo simulations intended to investigate the statistics Flm

and F2. under various conditions in the linear regression model. (A brief

analysis of the original data is given in Section 5.)

:.
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2. DESIGNS CHOSEN FOR SIMULATIONS

Initially we looked at 15 different designs comprising various numbers

of points at the x-locations of the original data. From these 15 we selected

the four shown in Table 2 for our investigation. In this table, the letters

x, f denote the sites and frequency of points at that site, respectively.

* The h values are the corresponding values of the diagonal of the
1,2H -H X(X'X) V matrix. We also record the Eh i values at the foot of each

2colum. Smaller values of Eh ii denote designs "more robust" to outliers,

as described by Box and Draper (1975). The table also shows the locations at

I* which one outlier will be added, at which pairs of outliers will be added and

the corresponding values of H22 and 11-H 221* H22 is the part of the H

matrix that corresponds to the two sites and 'I-H,,221 is a spatial measure of

the positions of these sites, lower values indicating more "remoteness" from

* the rest of the data. (See Draper and John, 1981.)

(Note: the words "cases" and "locations" have different meanings.

"Cases" refer to specific animals in Table 1. "Locations" refer to x-sites
counted off in the various designs. For example, location 15 is at x = 5

in Design 1, x = 7 in Design 2, x z 15 in Design 3, and x z 0 in Design 4.)

The four designs used were selected to achieve a representative range

of the characteristics that occurred, within limits. For example, the

fifteen Zh2i values ranged from 0.1537 to 0.4755 (apart from two designs with

25 points on one end of the x-range and one point at the other, for which
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Table 2. Designs Used for Sim~ulation Studies and Locations of
Added Outliers.

Design Number

1 2 3 4
x f h f h f h f h

0 4 0.0858 8 0.0809 13 0.0769 20 0.0457
1 6 0.0667 2 0.0691 0 - 1 0.0394
3 3 0.0432 2 0.0511 0 - 1 0.0443
5 6 0.0394 2 0.0410 0 - 1 0.0725
7 2 0.0553 2 0.0386 0 - 1 0.1239

10 4 0.1161 2 0.0496 0 - 1 0.2445
15 1 0.3159 8 0.1067 13 0.0769 1 0.5617

"h2  0.2308 0.1695 0.1537 0.4412I

One
outlier at
locations 5,25,26 14,15 1,14 21,25

wh<,re
x = 1,10,15 5,7 0,15 1,10

Pair of
outliers at
locations (25,25) (14,15) (1,2) (25,25)

t6with r041 .] F. 0 3 .91 .077 .17] .039 .024

!-22 1.85 . . .o39J L .077  07J L024 .244j
and

I-H221= .570 .921 .846 .725

Pairs of
outliers at
locations (5,25) (1,14)

w-067 -.008 .077 0
[-.008 [ 0 .077]

o and

I-H221 = .825 .852

.-.. . ,-, ,-.S. ,.- . ,. .. . . , . ... . -. - .-... .. . ,.... .. . ... . .-.S. .. ,. .. . , .. .' .. '. . ' ,
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Eh 2 took the uncharacteristic value 1.04). Thi aim was to enable the assess-

ment of the effects of several factors on the empirical power of the tests,

specifically these:

(a) the use of tests based on Flm and on F2m both in the presence of

a single outlier and when two outliers are present.

(b) the h-value (and the appropriate A 1 value) corresponding to each

outlier site.

(c) the values of the elements in the H22 matrix corresponding to the

two outliers sites.

(d) the i-Ha221 corresponding to H22 from (c).

(e) the XA2 value (in the case of two outliers).

Obviously, by definition, the values of the X's are functions of the appro-

*; priate h and 8 values; see Eq. (1.3). The X's are used here as general

measures of departure from the null hypothesis and not in connection with any

(inappropriate in the present context) non-central F-distribution.

*1

.. . . . . . . . . . .
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3. CRITICAL VALUES FOR Fm IN STRAIGHT LINE REGRESSION MODELS.

.. K

John and Draper (1978) and Draper and John (1980) suggest the following

sequential strategy for the detection of the number of outliers and of their

location in a two-way ANOVA table with one observation per cell:

(a) Determine K, the maximum reasonable number of outliers in the data.

* (b) Test HO: no outliers versus HI: there are 1 or 2, ... or K

outliersby comparing FKm with the appropriate critical value of the null

distribution of P

(c) If H0 is rejected, the y value associated with the standardized

residual with maximum modulus value is declared an outlier and deleted,

and we return to (b) with K replaced by K - 1. The algorithm stops

when H0 is not rejected. For K.= 1, John and Draper (1978) suggest

the use of the conservative critical value derived from the Bonferonni

inequality Fl,np.K(c/n), where Ff 2(c) - P(Ff 2>c) is the upper tail

of a central F-variate with (flf 2) degrees of freedom. For K > 2 (actually,

for K = 2,3) Draper and John (1980) found that for testing H0 at a specified

,.S level a, good approximations to the critical values are obtained by setting:

m 3 r ( I~n) (3.1)

in Andrews' (1971) formula

IK-1 m-K K-2 [.__n-p-K+1 l m
l -K ((m-)IF( K-2 (m-i)FK 1
1 (m-1)FK,np.K(FKm) .I"0 - ,n-p-K+1 K-I n-p-Kl

.10 1-0
*(3.2)

2":,'~~~~~~~. . '.."... . .- .,.. . . ... ... .... .-.......
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which, in its original context, provided a bound on the probability of ob-

taining K extreme residuals.

We now proceed to assess empirically the critical values for the tests

based on FIM and F2m in a straight line regression setting. The critical values

may depend on the design configuration, namely on both the sample size and

on the x-values. We first evaluate for fixed sample size the effect of the

design on the critical values. Obviously it would be highly desirable if

the critical values are relatively constant and thus do not have to be

regenerated individually for each design. The effect of the design on the

null distribution of F and F2m was evaluated for the four designs described

in Section 2. The empirical null distribution of Flm and F2m was generated

using 3000 samples for each design. The upper 10%, 5%, 2.5% and 1% of the

cumulative distributions of Flm and F2m can be found in Table 3. The table

also records the values F [a/(n)], K - 1,2, derived using the Bonferonni

inequality.

First note that the four designs yielded very similar empirical critical
..1

values for both Flm and F2m*

The empirical percentiles of Flm are very similar to the lO0(ca/n)

percentiles of the Fl,n.p. 1 distribution. In most cases, the empirical

percentiles slightly exceeded the theoretical upper bounds F1 l ( )

based on the Bonferonni inequality. The Bonferonni critical values for

V,. Flm are clearly very tight upper bounds and their use is recommended for all

regression designs. This concurs with Draper and John's procedure for

the detection of a single outlier in a two-way ANOVA design.

,.%.,, .. .. . ., .. .,. -.. ... . . . *.. ., , . ... . .-. .. ... . . . . . . . , .. . . . .. ,
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Table 3. Empirical Percentiles of Fm and 2. for, the Four Designs Presented

in Table 2. The Values Listed in Parentheses are the Relative

Frequencies by which F~ Exceeded FnP {c/), K 1,2.

K I

CL DESIGN 1 DESIGN 2 DESIGN 3 DESIGN 4 F Kpn-p-/(K))

.10 10.33(.100) 10.42(.104) 10.35(.101) 10.59(.110) 10.334

.05 12.48(.053) 12.47(.052) 12.59(.056) 12.42(.051) 12.257

.025 14.59(.027) 14.59(.027) 14.59(.027) 14.25(.025) 14.315

.01 16.97(.009) 17.32(.011) 17.76(.012) 18.06(.012) 17.246

K= 2

.10 9.90(.043) 10.05(.049) 10.17(.043) 10.16(.050) 11.943

.05 11.51(.023) 11.86(.025) 11.66(.022) 11.96(.026) 13.435

U'.025 13.19(.012) 13.45(.012) 13.08(.012) 13.46(.013) 15.025
.01 15.33(.005) 15.57(.006) 15.48(.006) 16.11(.006) 17.285
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The comparison of the percentiles of the Fm distribution for various

designs is more relevant. The 95th percentile of the null empirical dis-

tribution of F2 in the original design (11.507) corresponds to the 95.7,

95.4 and 95.8-th percentiles of the empirical distributions of F2M generated

under the designs 2. 3 and 4. The differences are small at other percentiles

as well. Thus it appears that the critical values generated under the

original design (either by simulation or computed from an approximation

formula) can be safely used with other designs, a reassuring result. In the

power study described in the next section, we use the critical values obtained

from the null distribution of F2M under the original design. Note that for

a = 0.1, 0.05, 0.025 and 0.01, F-1  [,/(n) corresponds to approximately
2,n-p-2 2

half of the nominal a.

Using the x-values of the original design (Table 1), 3000 samples were

now generated to provide the null distribution of F for 1, 2, 3, 4, 5,

and 6 y-values at each of the 26 x-values. This enabled us to list the

empirical percentiles of F2m for various n's and a's and to develop an

approximating formula for the critical values. Following John and Draper

(1978), we do that by estimating Andrews' parameter m in (3.2) with the

formula set at prespecified probability values. Specifically for each value

of n - 26j, j - 1,...,6, let F(t) be the upper lOOt-th percentile of the2m

empirical cumulative distribution of F2m and let at a 1-t/3000, t = 1,...,3000.

Denote the resulting solution of (3.2) by mt. We thus obtained 3000 x 6

triplets (mt,ct,n). The extreme 1%, in both tails of the six empirical

"; .... ; ;,,*',o".""- ,. " , -........ ... . .,.. -. ... . .. -.... .. ,•.... .. ... .
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distributions of F2. were deleted due to their higher instability. The

equation m/n - a + bn was fitted to the remaining 17,640 points by

ordinary least squares giving m/n - 0.59 - 0.0015n with R2 = 0.26. The

fit is obviously not satisfactory. The addition of an a-term to the re-

J 2gression equation yielded m/n = 0.778 - 0.378n - 0.0015n with R = 0.94, a

definite improvement. (Obviously, since the vector of a's is orthogonal

to the vector of n's the coefficent of n remains unchanged when the a-term

is added to the equation.) For a - 0.05 the relationship is m - 0.76n(1-0.0015n)

or roughly m -u(I 3

We thus conclude that, in a straight line regression, the critical values

for F2m at a = 0.05 can be obtained by substituting in (3.2) m = n(1 - F_4) .

Note the great similarity to the John and Draper (1978) approximation for

the two-way table investigation m - n(1 - T ). However, if the critical

values are sought at other a's the effect of a on the value of m cannot

be ignored and the critical values should be obtained by substituting in (3.2)

the value m - n(O.778-0.378c-0.0015n). Based on the results from the com-

parisons of the four designs and on the similarity of the approximating

formula with the one obtained for two-way designs, we speculate that these

approximations are valid over a wide range of designs.

a

, ', . .j-. , . . .. • . . . . . . . .. . .. . . . .. . . .. . . .. . . . . . . . . . .
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1 4. POWER OF THE TESTS BASED ON THE STATrSTICS Fl, AND F2m.

6.7.

We now turn to investigate the behaviour of the tests based on Fl, and

F2m in the presence of one and two outliers. Specifically, for each of the

four designs and the locations of the assumed outliers given in Table 2,

we generated 3000 samples according to model (1.1). For convenience we re-

fer to a specific design together with the sites at which the outliers are

located as a configuration. In all, we have evaluated 15 configurations.

The outliers were of size +3a and +5a. The empirical power is defined as

the percent out of 3000 samples that the statistic F Km exceeds its a = 0.05

critical value. Note that the observation(s) thus identified as outlier(s)

may or may not be the actual outlier(s) (although typically they would be).

4.1 Simulation results. K - 1.

In the case of a single outlier the simulation study addresses the

following issues:

(a) How the power of the test based on F1m varies with the leverage

at the outlier's site and with the overall measure of robustness Eh11.

(b) How the power of the test based on F2m behaves when only a single

outlier is present.

The upper panel of Table 4 compares two configurations with almost

equal h-values at the outlier's site but with very different Zh 2s. WeiiI
observe that, for equal outlier's size, there is little variation in power

between the two configurations.

,, ,. .... . ....-. ... . . .
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Table 4. Empirical Power Results (xlO0) with K - 1.

1

DESIGN 2; Outlier at site 14 DESIGN 4; Outlier at site 21

2 AF 1  F2, [lm F2m

3a 4.31 32.7 30.5 4.32 34.5 31.0

50 11.99 90.1 86.6 12.01 89.8 85.8

-3a 4.31 34.2 32.4 4.32 32.5 28.6
-5 11.99 90.1 86.4 12.01 90.7 86.6

h - value .041 .039

at outlier's site

Eh 2  .169 .441

i

DESIGN 1; Outlier at site 26 DESIGN 4; Outlier at site 25
,2 FXm F a2  Fl F2m

I 2m F
3o 3.08 23.7 21.8 3.40 24.9 22.6

5 8.55 73.4 68.3 9.45 78.9 73.5

-3a 3.08 22.3 19.6 3.40 24.7 22.6

-5 8.55 73.9 69.3 9.40 78.3 73.6

h - value .316 .244

at outlier's site

Eh .231 .441

9

! , , .-.- *-b .. i.j_-. . , ,. -% . .. . ..

.. ,, _,,:., ,:, , , .,, , ..€ . , .. ....... , . . .. .-. ,. .. .. ... ............. ,,,.,
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The lower panel of Table 4 compares two configurations with different

h-values at the outlier's site and different (and reversed in direction)

E h2 's. Powers are lower than above (because of higher h-values) and in-ii
crease as expected with decreasing h values, and this effect is not re-

versed by a lower Ehi2 value in the first of the two configurations.

The implication from the whole of Table 4 is that power does not change

with Zh i, but increases as the h-value of the outlier site decreases.

In all four configurations in Table 4, the use of the test based on

F2 m (instead of Flm) resulted in a decrease of power.

4.2 Simulation results, K - 2.

In configurations with two outliers, let 01 and 02 be their respective

sizes, so that 0 = (el,e 2)'. The following issues are addressed in the
simulation study with K = 2:

(a) How the power varies with the (Hz2 1 I-H 2 1,) which are related to

the outliers' locations and with the overall measure of robustness h 2

(b) How the power varies with the relative position of the outliers.

(c) How the power of the test based on FIm is affected by the presence and

the position of the second outlier. We note that the performance of

Flm when one than a single outlier is present may be of interest in

the cases when one does not recognize the presence of a second outlier

and/or when the test is performed in a "stepwise" fashion (see, e.g.,

Anscombe, 1960).

;.- - . - . . ;.. . .. ,,,d1 % , . % ,.;- . ' . . , -. . . . -. ;.- •.. .-. ,% . -.-.-.. . . .- ,-.-•-, -. . ,.

*1 .,. . . . ,-,- ,::, , ., . .",. , .. , .- . , . . - . . . - . , . : , . . . . . . , . . . .. .
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In Table 5 we compare the empirical power 6f the tests in two con-

figurations. The first configuration has both a small I!-H221 value at the

outliers' locations and a smaller Eh11 . From Table 5 we observe:

(a) In general, the power of the tests increases monotonically with X 2 "

(Note that, unlike V X2 is not a monotonic function of I-Hz2l.)

(b) Neither the relative position of the two outliers (measured by h12) nor

the value of Eh 2 appear to affect the power of the test based on F2m.

(c) When the two outliers have equal signs, the test based on Flm has a

smaller power than the one obtained by F2m*

(d) The magnitude of the loss of power due to the use of Fim (instead of

F2m) depends on h12 . For a large h12 value and sign (61) = sign (e2), the

decrease in power may be considerable and may reverse the monotonicity

with X2 . Table 6 presents several additional configurations from all

four designs to further illustrate this point.

Tables 7 and 8 present some comparisons of power achieved by Flm when,

in the same design (a) K = 1, versus (b) K - 2 with lell 1 8121. The assumed

outlier in (a) is included in the pair of outliers in (b). The configurations

in Table 7 have similar and relatively small h12-values. We observe that,

when the h-value of the second outlier is small (Design 2, site 15) and sign

(e1) = sign (02 ),the power obtained when K = 2 is smaller than when K = 1.

When the two outliers have opposite signs, the two configurations yield

similar power. When the h-value of the second outlier is large (Design 4,

site 25) the power when K = 2 is in general smaller than when K 2 1. Again,

the power decreases when the two outliers have the same signs.

In Table 8 we investigate the effect of the relative position of the

outliers. When the two outliers are at the extremes of the x-range (h1 2=0)

the power of the Flm test is generally smaller than when K 1 and is not

~~.. -..-.. .-. .... ...... . * ,-. * .. , ....
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Table 5. Empirical Power Results (xlOO) when K 2.

DESIGN 1; Outliers at sites (25,26). DESIGN 4; Outliers at sites (21, 25)

e ,e) 2 F F 2 F F2 m
- 12) 2 IM2 20 1.2

(3o,3o) 5.389 11.8 20.3 7.503 27.5 34.5

(3a,5) 9.751 34.9 50.5 13.401 63.2 74.6

(3a,-3a) 8.723 52.8 50.8 7.941 32.0 39.5

! (3a,-50) 15.306 86.5 84.9 14.130 67.1 75.4

(5a,3a) 11.350 59.3 64.4 15.042 80.9 83.3

(5a,5a) 14.971 30.9 76.6 20.843 74.2 93.3

(5a,-3a) 16.906 92.1 90.5 15.771 84.6 86.9

(S,-50) 24.230 97.8 98.2 22.058 85.0 94.7

H22 at outliers' p.116 .1851 r.039 .0241
sites L..185 .3161 L.024 .244-

I - H221 .570 .725

Eh2  .231 .441

ii

4

4,''"" -. -'' : ":. ;, ' -- ", '';. ''' -"[' -. --- ',"-" .'. ""' [, , ' ." .-.. "''' ' ' " --.-- .'.'
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Table 6. Empirical Power (xlOO) Using Flm,as a Function of X 2 and h1 2 .

Design Outliers' sites h12 (e1s 02) A 2o2  Power

1 ( (25,26) 0.185 (5o,- ) 16.906 92.1
Rossoa) 14.971 30.9

1 (5,25) -0.008 (50,-3r) 15.519 77.9
i(5,50) 22.921 83.8

3 (1,2) 0.077 (so,-3a) 16.845 86.1
o(,So) 21.154 66.2

3 (1,14) 0 (so,-3c) 15.692 78.8
(sso) 23.076 82.3

4 (21,25) 0.024 (5a,-3r) 15.771 84.6
(Sa,5o) 20.843 74.2

T

.

L4
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Table 7. Comparison of Power (xlOO) of the Test Based on Fl, When K = 1

(A Single Outlier of Size e) Versus K A 2 (Outliers of Sizes 61,82).

DESIGN 2 DESIGN 4

K=I K=2 K= K=2

0 e1 e2 at site 14 at sites (14,15) at site 21 at sites (21,25)

3a 3a,3a 32.7 27.6 34.5 27.5
3a,-3G 36.7 32.0

5a 5a,5a 90.1 76.2 89.8 74.2
5a ,-5o 89.6 85.0

-3a -3a,-3c 34.2 27.7 32.5 28.4

3o,3a 36.9 32.9

. -5 -5a,-5a 90.1 77.4 90.7 76.8
-50,5a 89.2 84.4

t22 at outliers' 0.041 [0.041 0.0381 0.039 [0.039 0.024]
sites 10.038 0.039J 10.024 0.244J

Eh 2 0.169 0. 441
9.

-a.

i'-.

|-.
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Table 8. A Further Comparison of Power (xl0) of the' Test Based on FIm When

K =1 Versus K =2.

DESItGN 3

K=I K=2 K=2
S e1 , e2 at site 1 at sites (1,2) at sites (1,14)

3a 3a,3a 31.3 22.4 32.3
3a,-3 42.2 32.5

5a 5a,5c 88.7 66.2 82.3
50 -5 92.8 82.6

-3a -3a,-3a 30.8 24.6 31.8
-3a,3 43.3 31.8

-5o -5,-5a 89.5 65.6 83.4
-5a,5a 93.4 81.1

H at out iers' 0.077 (0.077 0.077 .077
sites 0.077 0]077 0 0.07

Eh2  0.154
11,_

.......-.

..... [.
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affected by the signs of the 's. However, when the two outliers are

clustered (h12- 0.077) and sign (e1 ) + sign (e2). the power is larger when K = 2
than when K I. The opposite is true when sign (81) - sign (e2)

..

%ee
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5. ANl EXAMPLE

A brief diagnostic analysis based on the statistics F, mis now per-

formed on the data from Table 1. No attempt is made to carry out a complete

analysis of this set of data here but only to present an application of the

use of the F mstatistics. For further analyses see Laishes and Rolfe (1980)

and Fuchs (1980). The fitted equation was y - 6.38 + l0.59x with R2  0.89.

The plot of y versus x indicates no obvious deviation from the fitted

model. When we attempt a stepwise deletion of outliers (or, equivalently,

assume at first that no more than one outlier is present), case 12 is detected

as an outlier. After the deletion of case 12, case 13 is detected next. No

further outliers were detected. We note that cases 12 and 13 correspond to

the two jaundiced animals.

When a simultaneous detection of a pair of outliers was attempted, Q2.

selected the cases 12 and 13 as potential outliers and,in the subsequent

testing procedure, both were labelled as outliers. When K - 3 was postulated,

Qmselected cases 6, 12 and 13 as potential outliers but subsequent analyses

identified only cases 12 and 13 as outliers. Thus all tests detected both the

two jaundiced animals, and only these.

Next we performed the diagnostic analysis on the data from each of the

three days (A, B and C) separately. No outliers were detected, not even for

experiment A which included the two jaundiced animals. The reason for

this is that the design in Experiment A is very "non-robust". The two

jaundiced cases happen to have extreme x-values (x *10 and x - 15, respectively).

This alters considerably the ability to detect them as outliers in data set
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A alone. When all data are combined however, three more observations with

x =10 are recorded and the fact that case 12 is an outlier becomes obvious,

.1 which then leads to the detection of the second jaundiced animal.
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6.-'--. CONCLUSIONS3~3

Th au fQK sa "ules ttsi asbe salse o

-3svrlyas nti atce'eeaieteditiuinlpoete

ofthe vealed f Ksaoles statistic frtecsofatahas bee ebliefor

model and for K = 1 ,2. We. have also extended previous investigations of

F by carrying out power calculations for various designs.

We found that a correct determination of the K in advance has con-

siderable influence on the power of the test. When two outliers were pre-

sent, the test based on Flm performed more poorly than that based on F2m. The

* loss in power is especially large when the two outliers are close to each

other with the same sign. A decrease in power also results from the use

of 2m when only one outlier is present.
The recommiendation mentioned by both Box and Draper (1975) and Draper

and John (1980) that it would seem desirable to choose the experimental de-
sign so that Eh2 is as small as possible is valid when one expects random

outliers at unknown positions. Here, however, the experimental design

appears to affect the power through the leverage at the outliers' sites.

The practical implication is that, if the experimenter has some prior know-

ledge about the experimental sites which are prone to outliers (as is the

case in carcinogenic studies at high dosages) it may be wise to decrease

the h-values at those sites even at the expense of overall robustness.

Our final conmie nt concerns the formulas found for approximating the

generated percentage points of Fm for the straight line situation. Pre-

viously, Draper and John (1980) remarked that, for two way tables, the
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approximating formula m - 3nfl-(K+l)n/16001 worked well for both K = 2

and 3. Here, for the case K a 2 and a a 0.05, a very similar formula emerged,

namely M = 3{l-(K+l)n/2000}. This leads us to speculate that, at least for

c= 0.05, either of these formulas (which differ very little for moderate n)

would provide an adequate method for obtaining critical test values in a
.4

wide variety of design circumstances. For other a values, a more general

formula is offered.
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